Hydrogenation of Organic Oxygenates on Ni/Al₂O₃ and Ni/SiO₂ Catalysts Baoshu Chen and John L. Falconer Department of Chemical Engineering, University of Colorado, Boulder, Colorado 80309-0424 Received June 28, 1993; Revised December 21, 1993 Temperature-programmed reaction (TPR) was used to compare the hydrogenation rates of adsorbed methanol, ethanol, 1-propanol, dimethyl ether, formic acid, acetaldehyde, acetone, and methoxy (formed from coadsorbed CO and H₂) on a Ni/Al₂O₃ catalyst. The oxygenates adsorb on the Al₂O₃ support, and hydrogenation involves a spillover process since H₂ dissociates on the Ni surface. The rates of hydrogenation to CH₄ are essentially the same for all the oxygenates studied. Apparently the same rate-determining step, reverse spillover of an oxygenated species from Al₂O₃ to Ni, limits the formation of CH₄. Similar processes occur on Ni/SiO₂ for methanol and ethanol, but their coverages on SiO2 are a factor of 15 lower and hydrogenation to CH4 takes place over a broad temperature range. None of the oxygenates remained on the Ni surface of Ni/Al₂O₃ in H₂ flow; apparently they spilled over to the Al₂O₃ or were hydrogenated at room temperature. On Ni/SiO₂, only HCOOH adsorbs and dissociates on Ni to form adsorbed CO. Coadsorption shows that ¹³CO and various oxygenates have independent adsorption and hydrogenation behavior. demic Press, Inc. #### INTRODUCTION Transient reaction studies, in which the adsorption steps are separated from the reaction and desorption steps, are particularly useful for understanding catalytic processes in which two reactants can adsorb on different phases of the catalyst surface. Such reaction process may involve spillover. For example, previous studies have used temperature-programmed reaction (TPR) on Ni/ Al_2O_3 catalysts to study CO hydrogenation (1–7). Those studies showed that both CO and H2 initially adsorbed on Ni, but CH_3O formed on the Al_2O_3 support by a spillover process. The CH₃O was hydrogenated during TPR in flowing H₂, which dissociated on the Ni surface. In the current study, hydrogenation of organic oxygenates on Ni/Al₂O₃ was studied by the same TPR procedure. The organic reactants were adsorbed directly on the Al₂O₃ support at room temperature, and H₂ was continuously supplied to the Ni surface as the catalyst temperature was ramped. Since the initial locations of the adsorbents are known, the rate of spillover must be as fast as the rate of product formation. TPR of a few of the organic reactants was also carried out on Al_2O_3 alone and on a Ni/SiO₂ catalyst. Alumina was used alone to show that the oxygenates adsorb directly on the Al_2O_3 support of Ni/ Al_2O_3 . One interesting aspect of this study is that all the molecules studied hydrogenated to CH₄ on Ni/Al₂O₃ at essentially identical rates. That is, their rates of hydrogenation all appear limited by the same rate-determining step. Moreover, in most cases, the majority of the adsorbed organic reactant is hydrogenated to CH₄. Because the organics decompose at much higher temperatures on Al₂O₃ than the temperatures at which they hydrogenate to CH₄ on Ni/Al₂O₃, spillover is a critical step in the reaction process during TPR. Methanol, ethanol, and propanol were used because they have all been reported to form alkoxides on Al₂O₃ surfaces (8–13). Similarly, $CO + H_2$ form CH_3O on the Al₂O₃ support of Ni/Al₂O₃. Since formates have been reported to form on Al₂O₃ from CO and H₂ under some conditions (14-17), formate was also formed by HCOOH adsorption (18-21), and the adsorbed formate was then hydrogenated during TPR. Since CH₃OH dehydrates on Al₂O₃ surfaces to form dimethyl ether, (CH₃)₂O (22, 23), and (CH₃)₂O has been reported to dissociate to form CH₃O on Al₂O₃ (24), TPR was also used to study (CH₃)₂O hydrogenation. Formaldehyde, CH₂O, may be an intermediate as HCOO reacts to CH₃O on Al₂O₃ (25), and thus its hydrogenation behavior is also of interest. However, because CH₂O is a solid at room temperature and thus difficult to adsorb, acetaldehyde, C₂H₄O, was used instead. Acetone, (CH₃)₂CO, hydrogenation was studied by TPR because, like CO hydrogenation (26-28), the turnover frequency for acetone hydrogenation depends on the support (29). All these organics adsorbed to high coverages on the Al₂O₃ surface of Ni/Al₂O₃ and they all hydrogenated to CH₄. In contrast, the amount of adsorption on the SiO₂ surface of Ni/SiO₂ was much smaller, and thus only a few organic reactants were studied by TPR on Ni/SiO₂. The competition between CO and organics for adsorption sites was studied for a few organics on both Ni/Al_2O_3 and Ni/SiO_2 , and CO adsorption was not influenced by adsorption of the organic reactants. #### **EXPERIMENTAL METHODS** Temperature-programmed desorption (TPD) and reaction (TPR) experiments were carried out on Ni/Al₂O₃, Ni/SiO₂, and Al₂O₃ in a system that was described previously (2, 6). A 100-mg sample of the catalyst was supported on a frit in a quartz reactor, and the carrier gas (H₂ or He) at atmospheric pressure flowed over the catalyst at a flow rate of 100 cm³/min (STP). Immediately downstream, the gas was analyzed with a UTI quadrupole mass spectrometer located in a turbopumped ultrahigh vacuum system. A computer system allowed simultaneous detection of multiple mass peaks. A 0.25-mm-diameter shielded thermocouple was connected to a derivative-proportional temperature programmer, which controlled an electric furnace to provide a constant heating rate of 1 K/s. At the beginning of each series of experiments, the reduced and passivated catalyst was pretreated for 2 h at 773 K in ambient pressure H₂ flow. To maintain a clean surface, the catalyst was held in H₂ at 773 K for 10–15 min after each TPR experiment. Carbon monoxide (10% ¹²CO/90% He, or ¹³CO) and dimethyl ether were injected with a pulse valve into a He or H₂ carrier gas that continually flowed through the catalyst. The other oxygenates were injected slowly with a liquid syringe into the He carrier gas upstream to the reactor. The liquid accumulated on the tip of the syringe and then evaporated into the gas phase at room temperature. After adsorption, the catalyst was held in H₂ at ambient temperature for 30 min for equilibration, and TPR was carried out by heating the catalyst in H₂ flow while detecting products with the mass spectrometer. For TPD experiments, the catalyst temperature was raised in He instead of H₂ flow. The cracking fractions at mass 15 from CH₃OH, HCOOH, and (CH₃)₂O were subtracted from the mass 15 signals to obtain the CH₄ signals. Similarly, the signals at mass 28 were corrected for the cracking of CH₃OH, CO₂, C₂H₆, C₂H₄, (CH₃)₂O, and HCOOH to obtain the CO signals. When ¹³CO was adsorbed, masses 17 (13CH₄), 29 (13CO), and 45 (13CO₂) were also monitored during TPR. Mass 17 was corrected for H₂O cracking to obtain the ¹³CH₄ signal, and mass 15 was corrected for ¹³CH₄ cracking. Known volumes of pure gases or liquids were injected into the carrier gas, downstream of the reactor, to calibrate the mass spectrometer. The catalysts (5.7% Ni/Al₂O₃ and 9.5% Ni/SiO₂) were prepared by impregnating Kaiser γ -Al₂O₃ (A-201) and Davison silica (Grade 57), respectively, to incipient wet- ness with an aqueous solution of nickel nitrate hydrate. After being dried in a vacuum oven for 24 h at 373–383 K, the catalysts were directly reduced in H_2 for 10 h at 773 K and passivated with 2% O_2 in N_2 at room temperature. Weight loadings were measured by atomic absorption. The dispersions of Ni on Ni/SiO₂ and Ni/Al₂O₃ are 2.4 and 1.7%, respectively, and were estimated from the amounts of CH_4 and CO observed during TPR for CO adsorption at 300 K. Kaiser γ -Al₂O₃ (A-201) was also used alone; its surface area is 220 m²/g (30). #### **RESULTS** Nickel/Silica Although CH₃O formed from CO + H₂ on Ni/Al₂O₃ catalysts (6, 31), it did not form on Ni/SiO₂ under the same conditions (31, 32). Instead, as shown in Fig. 1a, when CO was adsorbed at 300 K on the Ni surface of Ni/SiO₂, it reacted to form CH₄ in a single peak centered at 480 K (32, 33). The majority of the CO reacted to CH₄ (24 μ mol/g catalyst), but 15 μ mol CO/g catalyst desorbed between 300 and 500 K. When ¹²CO was adsorbed at 300 K and then ¹³CO was exposed to the catalyst at 300 K for 30 min, the ¹³CO readily displaced ¹²CO. During the subsequent TPR, only ¹³CO and ¹³CH₄ were observed, FIG. 1. TPR spectra on 9.5% Ni/SiO₂ following adsorption at 300 K of (a) CO for 15 min, (b) 4 μ l CH₃OH. FIG. 2. TPR spectra on 9.5% Ni/SiO₂ following adsorption at 300 K of (a) 2 μ l C₂H₃OH (b) 2 μ l (CH₃)₂CO. and these signals were identical to the corresponding signals in Fig. 1a. The TPR spectra for CH₃OH adsorbed on Ni/SiO₂ at 300 K (Fig. 1b) indicate that CH₃OH did not decompose on the Ni surface and form CO during adsorption. Methane formed in a peak with a maximum at 495 K and in a broad peak that extended to 775 K; the CH₄ signal in Fig. 1b is quite different from that obtained for CO adsorption (Fig. 1a). For the high CH₃OH exposure used (1000 μ mol/g catalyst), only 33 µmol CH₄/g catalyst was produced, and 11 µmol CH₃OH/g catalyst desorbed. To help identify adsorption sites, CH₃OH and ¹³CO were sequentially adsorbed at 300 K, using the same exposures as in Figs. 1a and 1b. Isotope labeling allowed us to distinguish whether CH₄ formed from CO or CH₃OH. During the subsequent TPR, the ¹³CO and ¹³CH₄ signals were similar to the corresponding signals in Fig. 1a, and the ¹²CO and ¹²CH₄ signals were similar to the corresponding signals in Fig. 1b. The ¹³C and ¹²C product amounts were almost the same as the corresponding amounts in Figs. 1a and 1b. That is, ¹³CO and ¹²CH₃OH adsorbed independently of each other on Ni/SiO₂. The subsequent adsorption of ¹³CO did not displace adsorbed CH₃OH, and the adsorbed CH₃OH did not block sites for ¹³CO adsorption. Apparently, CH₃OH adsorbed on the SiO2 support and did not form CO on the Ni surface. Ethanol adsorption and hydrogenation on Ni/SiO₂ were quite similar to the same processes for CH₃OH. For high C₂H₅OH exposure (340 μ mol/g catalyst), only 45 μ mol CH₄ formed per gram of catalyst, and no other products besides unreacted C₂H₅OH were detected. Moreover, the CH₄ spectrum from C₂H₅OH hydrogenation (Fig. 2a) is almost identical in shape to CH₄ from CH₃OH hydrogenation. Both spectra consist of a narrow CH₄ peak, a broader peak at higher temperature, and CH₄ formation to 773 K, where heating was stopped. The only significant difference is that CH₄ from C₂H₅OH started forming at lower temperature. The CH₄ TPR spectrum for $(CH_3)_2CO$ hydrogenation (Fig. 2b) was also similar to the CH₄ TPR spectrum for CH₃OH hydrogenation. Methane (35 μ mol/g catalyst) started forming at 425 K and had a peak maximum at 504 K. The CH₄ rate was increasing significantly at 773 K, when heating was stopped to minimize catalyst sintering. Unreacted $(CH_3)_2CO$ desorbed in two peaks below 550 K, and some $(CH_3)_2CO$ was hydrogenated to $(CH_3)_2CO$ at low temperatures. In contrast to the methane TPR spectra for CH₃OH, C₂H₅OH, and (CH₃)₂CO, the methane TPR spectrum of HCOOH on Ni/SiO₂ (Fig. 3) was almost identical to that obtained for adsorbed CO. Methane formed in a narrow peak centered at 486 K, and the only difference from CO hydrogenation was the presence of a small, high temperature tail. In addition to CH₄ (32 μ mol/g catalyst), unreacted HCOOH desorbed below 450 K, and a significant amount of CO₂ (34 μ mol/g catalyst) formed at the same time. A small amount of CO (9 μ mol/g catalyst) also formed. The HCOOH exposure was 520 μ mol/g catalyst. ## Alumina As reported previously (34), methanol, ethanol, and 1-propanol readily adsorb on Al₂O₃. When the Al₂O₃ temperature was raised in He flow (TPD) following CH₃OH FIG. 3. TPR spectra on 9.5% Ni/SiO $_2$ following 2 μ l of HCOOH exposure in He at 300 K. adsorption, the majority of the CH_3OH decomposed above 700 K to form CO and H_2 , as shown in Fig. 4a. Some CH_3OH dehydrated to dimethyl ether ((CH_3)₂O) and H_2O at lower temperature, and a small amount of unreacted CH_3OH desorbed. Three aspects of the methanol TPD spectra on Al_2O_3 are of interest for the TPR experiments on Ni/Al_2O_3 : - The 2 μ L of CH₃OH (500 μ mol/g catalyst) that was exposed to the Al₂O₃ readily adsorbed; it was all observed during TPD as decomposition products or unreacted CH₃OH. - Using H_2 flow (TPR) instead of He flow (TPD) gave the same spectra as in Fig. 4a. Hydrogen desorption could not be observed during TPR, however, because of the high H_2 concentration in the gas stream. The gas phase H_2 had no influence on decomposition of adsorbed CH_3OH , apparently because H_2 does not dissociate on Al_2O_3 . - Methanol decomposed at much higher temperatures on Al_2O_3 than the temperatures at which it hydrogenated to CH_4 on Ni/Al_2O_3 . During TPD, C_2H_5OH and $1-C_3H_7OH$ decomposed more rapidly than CH_3OH on Al_2O_3 , and their main reactions were dehydrogenation to C_2H_4 and C_3H_6 , respectively. Dimethyl ether TPD spectra were similar to those obtained for CH_3OH TPD; most of the $(CH_3)_2O$ decom- FIG. 4. TPD spectra on Al₂O₃ following adsorption at 300 K of (a) 2 μ l CH₃OH, (b) 3 μ l HCOOH. FIG. 5. TPR spectra on 5.7% Ni/Al₂O₃ following CO adsorption (a) in He flow at 300 K for 30 min, (b) in H₂ flow at 385 K for 30 min. posed above 700 K to form CO and H_2 in single peaks at 780 K, and weakly adsorbed (CH₃)₂O desorbed below 550 K. TPD results are reported in detail elsewhere (34). Formic acid also readily adsorbed on the Al_2O_3 surface, and it decomposed much more rapidly than CH_3OH , but its main reaction pathway was dehydration to CO and H_2O (Fig. 4b). Note that the amounts of CO_2 and H_2 are quite small. When 3 μ L HCOOH (780 μ mol/g catalyst) was adsorbed, 643 μ mol CO and 568 μ mol H_2O /g catalyst were observed, and the H_2O desorption was not complete when heating was stopped. ### Nickel/Alumina Carbon monoxide hydrogenation. As reported previously (6), CO adsorbed at 300 K on Ni/Al₂O₃ catalysts hydrogenates to CH₄ in two distinct peaks during TPR. As shown in Fig. 5a, the same behavior was observed for the 5.7% Ni/Al₂O₃ catalyst used in this study. The narrow CH₄ peak at 445 K is due to hydrogenation of CO adsorbed on Ni. During TPR, CH₃O forms because of a spillover process, and the CH₄ peak at 546 K results as this CH₃O is hydrogenated. Higher coverage of CH₃O was obtained by CO and H₂ coadsorption at 385 K. For 30 min of coadsorption at 385 K, nine times as much CH₄ formed during the subsequent TPR, and as shown in Fig. 5b, most of the CH₄ formed in the high temperature peak. This 30- min exposure did not saturate the Al₂O₃ surface, and a much longer exposure time is required for saturation of this low dispersion catalyst. Methanol hydrogenation. In contrast to adsorbed CO, adsorbed CH₃OH was hydrogenated to CH₄ in a single peak on Ni/Al₂O₃. For an exposure of 25 μ mol CH₃OH/g catalyst, the single CH₄ peak was at 532 K; this is almost identical to the CH₄ peak that formed at 530 K (Fig. 5b) from CO and H₂ coadsorption. As shown in Fig. 6a, at higher CH₃OH exposures (500 μ mol CH₃OH/ g catalyst), CH₄ also formed in a single peak, but the peak temperature increased to 543 K and the peak was narrower (halfwidth of 44 K instead of 58 K). Most of the CH₃OH was hydrogenated to CH₄ (374 μ mol/g catalyst), but small amounts of (CH₃)₂O and CO also formed at the same temperature. Even smaller amounts of CO₂ and unreacted CH₃OH were also observed. For higher CH₃OH exposures (750 and 1000 μ mol/g catalyst), the size of the CH₄ peak at 543 K increased to 440 and 462 µmol/g catalyst, respectively, but the peak shape was unchanged. As shown in Table 1, the amounts of CO and CH₃OH increased dramatically, while (CH₃)₂O formation increased to a lesser extent. Of particular significance for CH₃OH hydrogenation is that a low temperature CH₄ peak was *not* observed during TPR. That is, CH₃OH adsorbed at 300 K on Ni/Al₂O₃ did FIG. 6. TPR spectra on 5.7% Ni/Al₂O₃ following adsorption at 300 K of 2 μ l of (a) CH₃OH (b) C₂H₅OH, (c) 1-C₃H₇OH. TABLE 1 TPR of CH₃OH on Ni/Al₂O₃ | CHOH | Amount of products (µmol/g catalyst) | | | | CVV . | |-------------------------------------|--------------------------------------|-----|-------|-----------------------------------|---| | CH ₃ OH
exposure (μl) | CH ₄ | со | СН₃ОН | (CH ₃) ₂ O | CH ₄ peak
temperature (K) | | 0.1 | 21 | 2 | _ | _ | 532 | | 2 | 374 | 15 | 1.4 | 16 | 543 | | 3 | 440 | 82 | 17 | 43 | 542 | | 4 | 462 | 106 | 156 | 30 | 543 | not form CO on Ni, even though CH₃OH adsorbed at 170 K on Ni in UHV forms CO upon decomposition below room temperature (35). Coadsorption of ¹³CO and CH₃OH at 300 K showed that CO adsorbs on Ni and CH₃OH adsorbs on Al₂O₃ and the two adsorption processes are independent. When ¹³CO was adsorbed first to saturate the Ni sites, and the catalyst was then exposed to 500 μ mol CH₃OH/g catalyst, the ¹³CH₄ and ¹²CH₄ peaks observed during TPR were the same as the CH₄ peaks in Figs. 5a and 6a, respectively. Similarly, when the adsorption order was reversed, but only 25 μ mol CH₃OH/g catalyst was adsorbed, the resulting TPR spectra in Fig. 7 were the same as those seen for individual CO and CH₃OH adsorptions. As observed on the Ni/SiO₂ catalyst, there was no indication that CO displaced adsorbed CH₃OH or vice versa. Ethanol and 1-propanol hydrogenation. The CH₄ TPR spectra of C_2H_5OH and $1-C_3H_7OH$ were almost identical to the CH₄ TPR spectrum of CH₃OH. Methane formed in a single peak and essentially the same peak temperatures and peak shapes were obtained. The CH₄ peak from C_2H_5OH hydrogenation, shown in Fig. 6b, has a maximum at 544 K. The large amount of CH₄ formed (685 μ mol/g catalyst) following exposure of 340 μ mol FIG. 7. TPR spectra on 5.7% Ni/Al₂O₃ for 0.1μ l of CH₃OH exposure in He at 300 K followed by 13 CO adsorption in He at 300 K for 15 min. C_2H_5OH/g catalyst indicates that both carbon atoms in C_2H_5OH were hydrogenated to CH_4 in the single peak. Only small amounts of C_2H_6 and C_2H_4O formed, and at the same temperature as CH_4 . No unreacted C_2H_5OH was observed. For low C_2H_5OH exposures (17 μ mol/g catalyst), the CH_4 peak was similar in shape to that in Fig. 6b, but its peak maximum was 8 K lower. At high 1-C₃H₇OH exposures (270 μ mol/g catalyst), the CH₄ peak temperature was 545 K, and 353 μ mol CH₄/g catalyst formed. As shown in Fig. 6c, significant amounts of C₃H₈, C₂H₆, CO, and CO₂ formed at the same temperature as CH₄. At low 1-C₃H₇OH exposures (13.5 μ mol/g catalyst), the CH₄ peak shape was the same, but its peak maximum was 9 K lower, and 18 μ mol CH₄/g catalyst formed. Over the same temperature range, C₃H₈, CO, C₂H₆, and CO₂ also formed in smaller amounts. Dimethyl ether and acetone hydrogenation. The CH₄ TPR spectrum for CH₄ formation from adsorbed (CH₃)₂O is almost identical to that for TPR of CH₃OH. As shown in Fig. 8a, CH₄ formed in a single peak centered at 546 K, and more than half the adsorbed (CH₃)₂O desorbed unreacted between 300 and 550 K. A total of 199 μ mol CH₄/g catalyst formed. The TPR of (CH₃)₂O to form CH₄ is expected to be similar to TPR of CH₃OH since their TPD spectra from Al₂O₃ are essentially identical. They apparently form the same adsorbed species. FIG. 8. TPR spectra on 5.7% Ni/Al₂O₃ following adsorption at 300 K of (a) $(CH_3)_2O$ for 15 min, (b) 1 μ l $(CH_3)_2CO$. FIG. 9. TPR spectra on 5.7% Ni/Al₂O₃ following 2 μ l of HCOOH adsorption in He at 300 K. Acetone also hydrogenated to CH_4 in a single peak during TPR in a shape that was similar to that obtained for CH_3OH hydrogenation. Two differences were noted, however. The CH_4 peak temperature was 528 K for $(CH_3)_2CO$ hydrogenation, and at high exposures (135 μ mol/g catalyst), the dominant species was unreacted $(CH_3)_2CO$, as shown in Fig. 8b. In addition, significant amounts of CO, C_2H_6 , and CO_2 formed, but there was no indication that CO was adsorbed on Ni following $(CH_3)_2CO$ adsorption. Similar results were obtained at low $(CH_3)_2CO$ exposures (13.5 μ mol/g catalyst); the CH_4 peak temperature and shape were unchanged, and the amount of unreacted $(CH_3)_2CO$ was slightly smaller than the CH_4 amount. Formic acid hydrogenation. At high exposure (520) µmol/g catalyst), the CH₄ signal during TPR of adsorbed HCOOH was similar to that observed for CH₃OH hydrogenation, and 264 μ mol CH₄/g catalyst formed. The peak temperature was 540 K, but as shown in Fig. 9, a high temperature tail extended to 750 K. In addition, CO₂ formed over the same temperature range as CH₄, and the CO₂ amount was 40% of the CH₄ amount. No unreacted HCOOH was observed and only a small amount of CO was seen. At low HCOOH exposure (26 μmol/g catalyst) the CH₄ peak was much broader and the peak temperature was 527 K. The amount of CO₂ formed was insignificant. The high temperature tail for CH₄ at both exposures may be due to hydrogenation of CO₂, which formed from HCOOH decomposition and then readsorbed on the Al₂O₃ surface. When TPR was carried out following CO₂ adsorption at 300 K, the CH₄ peak shape was similar to that observed for low HCOOH exposures. The peak maximum was at 523 K, and CH₄ also formed in a high temperature tail. Adsorption of ^{13}CO to saturation at 300 K prior to HCOOH adsorption (520 μ mol/g catalyst) showed that coadsorbed ^{13}CO was not displaced by HCOOH, nor did it affect HCOOH adsorption or hydrogenation. The ¹²CH₄, ¹²CO₂, and ¹²CO peak shapes and amounts were the same as in Fig. 9. Similarly, the ¹³CH₄ and ¹³CO peak shapes and amounts were the same as those obtained when CO was adsorbed alone (Fig. 5a). Acetaldehyde hydrogenation. Hydrogenation of C_2H_4O during TPR was only similar to CH_3OH hydrogenation at low exposures. As shown in Fig. 10a, two distinct CH_4 peaks were observed at low exposures (90 μ mol/g catalyst). The peak at 539 K was identical in shape, up to approximately 560 K, to the CH_4 peak from hydrogenation of CH_3OH at high coverage, but the high temperature peak was not seen during CH_3OH hydrogenation. In addition to CH_4 , C_2H_6 and unreacted C_2H_4O were observed at the same time as the low temperature CH_4 peak. The TPR spectra changed dramatically at high C_2H_4O exposures (900 μ mol/g catalyst), as shown in Fig. 10b. The initial rate of CH_4 formation was slower and CH_4 formed over a broad temperature range in overlapping peaks. This CH_4 signal was unlike that observed for any of the other organics studied. A total of 1050 μ mol CH_4/G g catalyst formed. In addition, unreacted C_2H_4O started desorbing at 325 K, and C_2H_6 was observed over a broad temperature range. Some C_2H_4O was also hydrogenated to C_2H_5OH at low temperatures. FIG. 10. TPR spectra on 5.7% Ni/Al₂O₃ following C_2H_4O adsorption at 300 K: (a) 0.5 μ l, (b) 5 μ l. #### DISCUSSION Adsorption Sites On both Ni/SiO₂ and Ni/Al₂O₃, the organic molecules adsorb directly on the oxide support at 300 K, and they do not adsorb and decompose on the Ni surfaces of the catalysts. The following observations support this conclusion: - The same amount of oxygenate adsorbed on Al₂O₃ as on Ni/Al₂O₃. - The amounts adsorbed on Ni/Al₂O₃ are much larger than the amount of CO that can adsorb on the Ni. - Adsorption amounts differ by more than a factor of 10 between Ni/SiO₂ and Ni/Al₂O₃. - Preadsorption of CO did not affect adsorption of organics and preadsorption of organics did not affect adsorption of CO on Ni/SiO₂ or Ni/Al₂O₃. That is, the same amount of $^{12}\text{CH}_4$ was seen during TPR whether ^{12}C -labeled oxygenate was adsorbed before or after ^{13}CO adsorption. Similarly, the same amount of $^{13}\text{CH}_4$ was seen. - A CH₄ peak corresponding to CO or carbon hydrogenation was not observed during TPR of organic oxygenates; that is, the organics did not adsorb and decompose on the Ni surface of Ni/SiO₂ or Ni/Al₂O₃. The only exception to these observations is HCOOH adsorption on Ni/SiO₂, and this will be discussed later. The concentration of adsorption sites on Al₂O₃ is more than an order of magnitude larger than on SiO₂. In addition, CO and H₂ interact on Ni/Al₂O₃ to form CH₃O, which is adsorbed on the support. In contrast, CH₃O did not form on Ni/SiO₂ from CO and H₂ (32), even though CH₃OH adsorbs on Ni/SiO₂. Perhaps the rate of CH₃O formation is much slower from CO and H₂ on Ni/SiO₂, since IR and NMR studies showed that CH₃O and C₂H₅O formed on Rh/SiO₂ at high pressures (15 atm) and temperatures (473 K) (36). Similar conditions were not tried for Ni/SiO₂. It is surprising that the organic molecules did not adsorb and decompose on the Ni surfaces of Ni/SiO₂ or Ni/Al₂O₃ at room temperature, since some of them adsorb and decompose to adsorbed CO and H below room temperature on single crystal Ni in UHV (37-41). On Ni(111) and Ni(110), for example, CH₃OH formed CH₃O, which decomposed at 290 K or above to form adsorbed CO and H. Most likely, the adsorbed CH₃O and H recombine at room temperature and desorb in our studies. Methanol desorbs near 290 K from Ni(111) due to recombination (41), and CH₃O on Ni(111) was hydrogenated to CH₃OH near 310 K when gas phase H_2 (pressure = 0.02-2.0 Torr) was present (42). Since we use much higher H₂ pressure at room temperature, alcohol molecules adsorbed on the Ni surface can apparently be hydrogenated. Similar processes may occur for the other organics. Only for formic acid adsorption on Ni/SiO₂ did we see a CH₄ peak during TPR that was the same as CH₄ from CO hydrogenation. As reported previously (43), HCOOH adsorption on SiO₂ is small relative to adsorption on Ni/SiO₂, apparently because the HCOOH mostly adsorbs on the Ni surface. Formic acid decomposition on Ni/SiO₂ forms CO₂, CO, H₂, and H₂O (43, 44). The CO₂ peak at 417 K corresponds to HCOOH decomposition and is similar to that reported previously during TPD (43). The simultaneous formation of H₂ could not be observed because of the H₂ flow. The additional CO₂ and CO that formed at higher temperatures during TPD were hydrogenated to CH₄ during our TPR experiments (Fig. 3). The HCOOH desorption between 300 and 500 K may be from physically adsorbed HCOOH (45, 46). What is surprising is that HCOOH adsorbed on Ni/Al₂O₃ did not form CO₂ and CO at low temperature, and a CH₄ peak that corresponds to CO hydrogenation was not observed. During TPD of HCOOH adsorbed on Ni/Al₂O₃, products (CO, CO₂, and H₂) started desorbing at 450 K and had maxima at 515 K (47). Apparently HCOOH adsorbed on Ni was able to spill over to the Al₂O₃ surface before it decomposed or was hydrogenated. ## Hydrogenation on Nickel/Silica Figures 1b and 2a show that CH₃OH and C₂H₅OH hydrogenate to CH₄ by similar pathways. In both cases, CH₄ forms in a narrow peak at 495 K and in a broad peak up to 700 K, where the rates start to increase. The TPR experiments with ¹³CO clearly show that (1) the ¹³CO adsorbed on Ni did not affect CH₃OH hydrogenation, (2) ¹³CO hydrogenates faster than CH₃OH or C₂H₅OH, and (3) the hydrogenation behavior of CO is distinctly different from that of the alcohols on Ni/SiO₂. Thus, the alcohols do not decompose on the Ni surface below 450 K to form H and CO (or carbon), which would then be hydrogenated to CH₄. Alkoxides formation on SiO₂ surfaces from alcohols has been detected in previous studies. Infrared studies of SiO₂ and Rh/SiO₂ showed that CH₃OH formed CH₃O and C₂H₅OH formed C₂H₅O (48–53). Since the alcohols adsorb on SiO₂ to form alkoxides but H₂ adsorbs and dissociates on the Ni surface, a spillover process must be involved in CH₄ formation. For example, the alcohols or alkoxides could diffuse to the Ni–SiO₂ interface and be hydrogenated to CH₄. Because some CH₄ forms at high temperatures, this diffusion process does not appear to be fast on SiO₂, and this may be why CH₃O does not readily form from CO and H₂ at 395 K in Ni/SiO₂. Since the TPR spectrum for CH₄ was similar for CH₃OH and (CH₃)₂CO, the same type of process may take place during (CH₃)₂CO hydrogenation. Hydrogenation on Nickel/Alumina As shown in Table 2, $\mathrm{CH_4}$ peak temperatures are almost identical during TPR of various oxygenates adsorbed on $\mathrm{Ni/Al_2O_3}$. The same peak temperatures mean specific rates of reaction are the same, and thus the same rate-determining step limited $\mathrm{CH_4}$ formation for each adsorbate. None of these adsorbates formed a $\mathrm{CH_4}$ peak that corresponds to hydrogenation of CO adsorbed on Ni. That is, CO was not present on the Ni surface below 450 K, since $\mathrm{CH_4}$ only started to form from these oxygenates above 450 K. One possible reaction sequence for hydrogenation of these organic oxygenates during TPR is: H₂ adsorption on Ni: $$H_2(g) + 2 S_{Ni} \rightarrow 2 H - S_{Ni}$$ [1] H atom spillover to the interface: $$H-S_{Ni} + S_{Ni-Al} \rightarrow H-S_{Ni-Al} + S_{Ni}$$ [2] Oxygenate spillover to the interface: $$Oxy-S_{A1} + S_{Ni-A1} \rightarrow Oxy-S_{Ni-A1} + S_{A1}$$ [3] Surface reaction: Oxy- $$S_{Ni-Al}$$ + n H- S_{Ni-Al} \rightarrow CH₄(g) + $(n + 1)$ S_{Ni-Al} + H₂O(g). [4] Note that reaction [4] is not balanced because Oxy-S_{Ni-Al} denotes various organic oxygenates. This reaction sequence assumes that CH₄ is not adsorbed on the surface. It also assumes that the surface reaction (reaction [4]) takes place at the Ni-Al₂O₃ interface, but instead H could spill over and react on the Al₂O₃ or the organic could spill over and react on the Ni. The oxygenates may all TABLE 2 Methane Peak Temperatures during TPR of Various Oxygenates Adsorbed on Ni/Al₂O₃ | | Peak temperature (K) | | | |--------------------------------------------|----------------------|---------------|--| | Adsorbate | Low coverage | High coverage | | | CH ₃ O from CO + H ₂ | 530 | | | | CH ₃ OH | 532 | 543 | | | (CH ₃) ₂ O | 536 | 546 | | | C ₂ H ₃ OH | 536 | 544 | | | 1-C ₃ H ₇ OH | 536 | 545 | | | НСООН | 527 | 540 | | | (CH ₃) ₂ CO | 528 | 528 | | | C ₂ H ₄ O | 539 | 660 | | | co | 445 | 455 | | decompose to CO and CH, before hydrogenation since the subsequent hydrogenation of these species would be fast, and thus reaction [4] may be a series of steps. Deuterium isotope labeling experiments on Ni/Al₂O₃ (54) showed that gas-phase H2 undergoes spillover from Ni to Al₂O₃ and exchange with CH₃OD adsorbed on Al₂O₃ at a faster rate than CH₃O decomposition or hydrogenation. Thus, H₂ adsorption is not rate limiting. If the H spillover processes for exchange and hydrogenation are similar. then H spillover does not appear to be rate-limiting for organic oxygenates hydrogenation on Ni/Al₂O₃. Because TPD experiments show that CH₃OH, C₂H₅OH, and 1-C₃H₇OH all decompose at similar rates and since this decomposition appears to occur by reverse spillover to the Ni-Al₂O₃ interface (34), a likely rate-limiting step for CH₄ formation is reaction [3], the reverse spillover step. Further support for this conclusion is the fact that alcohol decomposition during TPD has a maximum at a similar temperature to CH₄ formation during TPR. The CH₄ peak starts to form at a higher temperature and CH₄ formation is complete at a lower temperature during TPR than the CO and H₂ from decomposition during TPD. Since hydrogen is a product of oxygenate decomposition, it may inhibit decomposition when present at ambient pressure and thus delay the decomposition and subsequent hydrogenation (33). As oxygenate coverage increased, the CH₄ peak temperature also increased for most adsorbates used. That is, the hydrogenation appears to be less than first order in oxygenate coverage. If reaction occurs at the Ni-Al₂O₃ interface, increasing the coverage on the Al₂O₃ will not necessarily increase the rate because the sites at the interface may become saturated. Higher temperatures are then required to increase the reaction rate at the interface. Although CH₄ forms at essentially the same rate during TPR for all the oxygenates studied, the adsorbed intermediate is probably not the same. If the rate of reverse spillover is independent of the adsorbed species, then the rate of hydrogenation could be the same for the various oxygenates. Because of the different types of adsorbates used, it is difficult to envision a common intermediate. In addition, parallel reactions occur for many of the intermediates. For example, (CH₃)₂CO, C₂H₆, CO₂, and CO formed in significant quantities during TPR of adsorbed (CH₃)₂CO. At high coverages, (CH₃)₂CO was the dominant species, and CO was almost as large as CH₄. In contrast, for some of the other species (CH₃O, CH₃OH, (CH₃)₂O), methane was found almost exclusively. Similarly, at low coverages, C₂H₄O hydrogenated to CH₄ at the same rate as the other oxygenates, but as shown in Fig. 10b, the CH₄ TPR spectrum was quite different at high coverages. The CH₄ peak extended to 773 K, with a maximum above 650 K. Apparently some adsorbed species could not reach the Ni-Al₂O₃ interface before a parallel reaction took place to form species that were less readily hydrogenated to CH₄. The lower reactivity of C₂H₄O is also reflected in its TPD spectra. The CO and CO₂ products from C₂H₄O did not start to appear until 650 K (47), but the products from TPD of C₂H₅OH form between 400 and 900 K (34). The high temperature CH₄ peak may be due to hydrogenation of acetate that formed from C₂H₄O, since the CH₄ peak location was similar to the high temperature tail from formate hydrogenation in Fig. 9. Also, IR studies (55, 56) showed that C₂H₄O adsorbed on Al₂O₃ to form acetate above 473 K. Formic acid hydrogenation also exhibited differences from the other oxygenates. At low coverage, HCOOH hydrogenated to CH₄ in a broad peak that extended above 750 K. This may also reflect parallel decomposition to form CO₂ and H₂. The CO₂ readily adsorbs on Al₂O₃ and may be responsible for the high temperature tail since CO₂ adsorbed on Al₂O₃ hydrogenates to CH₄ in a similar matter to HCOOH (a similar peak temperature and a broad high temperature tail). Moreover, the high temperature tail was not observed for HCOOH on Ni/SiO2, and CO₂ does not adsorb on SiO₂. #### **CONCLUSIONS** A series of organic oxygenates exhibits similar behavior on supported nickel catalysts. The oxygenates readily adsorb on the Al₂O₃ surface of Ni/Al₂O₃. They do not strongly adsorb on Ni and are easily hydrogenated or they readily spill over from Ni to Al₂O₃. Thus, none of the oxygenates studied (CH₃OH, C₂H₅OH, 1-C₃H₇OH, C_2H_4O , $(CH_3)_2O$, HCOOH, $(CH_3)_2CO$) dissociates on the Ni surface of Ni/Al₂O₃ to form CO. The rates of hydrogenation to CH₄ are essentially the same for all the oxygenates studied, although HCOOH and C2H4O exhibit differences at low/high coverages. Hydrogenation involves a spillover process, since H₂ dissociates on the Ni surface but the organics are adsorbed on the Al₂O₃ surface. The same rate-determining step, reverse spillover of the organic from Al₂O₃ to Ni, appears to limit the formation of CH4. Carbon monoxide adsorbed on Ni does not affect organic adsorption or hydrogenation, nor is its adsorption or hydrogenation affected by adsorbed organics. Adsorbed CH₃O, formed by CO and H₂ coadsorption at elevated temperatures, exhibits the same hydrogenation behavior as adsorbed CH₃OH. Similar processes appear to take place on Ni/SiO₂ for adsorbed CH₂OH and C₂H₅OH, but the surface coverages on SiO₂ are a factor of 15 smaller and the processes are slower. In addition, HCOOH dissociates on the Ni surface to form CO and CO₂. #### ACKNOWLEDGMENT We gratefully acknowledge support by the National Science Foundation, Grant CTS-9021194. #### REFERENCES - Ozdogan, S. Z., Gochis, P. D., and Falconer, J. L., J. Catal. 83, 257 (1983). - 2. Kester, K. B., and Falconer, J. L., J. Catal. 89, 380 (1984). - Kester, K. B., Zagli, E., and Falconer, J. L., Appl. Catal. 22, 311 (1986). - 4. Huang, Y. J., and Schwarz, J. A., Appl. Catal. 24, 241 (1986). - Bailey, K. M., Chai, G. Y., and Falconer, J. L., "Proceedings, 9th International Congress on Catalysis, Calgary, 1988" (M. J. Phillips and M. Ternan, Eds.), Vol. 3, p. 1090. Chem. Institute of Canada, Ottawa, 1988. - Glugla, P. G., Bailey, K. M., and Falconer, J. L., J. Phys. Chem. 92, 4474 (1988). - 7. Chen, B., Falconer, J. L., and Chang, L., J. Catal. 127, 732 (1991). - 8. Greenler, R. G., J. Chem. Phys. 37, 2094 (1962). - Rossi, P. F., Busca, G., and Lorenzelli, V., Z. Phys. Chem. 149, 99 (1986). - Busca, G., Rossi, P. F., and Lorenzelli, V., J. Phys. Chem. 89, 5433 (1985). - Arai, H., Saito, Y., and Yoneda, Y., Bull. Chem. Soc. Jpn. 40, 731 (1967). - 12. Deo, A. V., and Dalla Lana, I. G., J. Phys. Chem. 73, 716 (1969). - 13. Kagel, R. O., J. Phys. Chem. 71, 844 (1967). - 14. Palazov, A., Kadinov, G., Boner, C., and Shapov, D., J. Catal. 74, 44 (1982). - Lü, Y., Xue, J., Li, X., Fu, G., and Zhang, D., Cuihua Xuebao 6, 116 (1985). - Mirodatos, C., Prauliaud, H., and Primet, M., J. Catal. 107, 275 (1987). - 17. Della-Betta, R. A., and Shelef, M., J. Catal. 48, 111 (1977). - Hirota, K., Fueki, K., Shindo, K., and Nakai, Y., Bull. Chem. Soc. Jpn. 32, 1261 (1959). - 19. Amenomiya, Y., Appl. Spectrosc. 32, 484 (1978). - 20. Amenomiya, Y., J. Catal. 57, 64 (1979). - Solymosi, F., Bánsági, T., and Erdöhelyi, A., J. Catal. 72, 166 (1981). - 22. Matsushima, T., and White, J. M., J. Catal. 44, 183 (1976). - DeCanio, E. C., Nero, V. P., and Bruno, J. W., J. Catal. 135, 444 (1992). - Chen, J. G., Basu, P., Ballinger, T. H., and Yates, J. T., Jr., Langmuir 5, 352 (1989). - Hindermann, J. P., Deluzarche, A., Kieffer, R., and Kiennemann, A., Can. J. Chem. Eng. 61, 21 (1983). - Robbins, J. L., and Maruchi-Soos, E., J. Phys. Chem. 93, 2885 (1989). - 27. Vannice, M. A., and Twu, C. C., J. Catal. 82, 213 (1983). - 28. Vannice, M. A., and Sudhakar, C., J. Phys. Chem. 88, 2429 (1984). - 29. Sen, B., and Vannice, M. A., J. Catal. 113, 52 (1988). - 30. Swecker, J. L., and Datye, A. K., J. Catal. 121, 196 (1990). - Sen, B., Falconer, J. L., Mao, T., Yu, M., and Flesner, R. L., J. Catal. 126, 465 (1990). - 32. Sen, B., and Falconer, J. L., J. Catal. 117, 404 (1989). - 33. Sen, B., and Falconer, J. L., J. Catal. 125, 35 (1990). - 34. Chen, B., and Falconer, J. L., J. Catal. 144, 214 (1993). - Richter, L. J., Gurney, B. A., Villarrubia, J. S., and Ho, W., Chem. Phys. Lett. 11, 185 (1984). - Chudek, J. A., McQuire, M. W., and Rochester, C. H., J. Catal. 135, 358 (1992). - 37. Demuth, J. E., and Ibach, H., Chem. Phys. Lett. 60, 395 (1979). - 38. Rubloff, G. W., and Demuth, J. E., J. Vac. Sci. Technol. 14, 419 (1977). - Erskine, J. L., and Bradshaw, A. M., Chem. Phys. Lett. 72, 260 (1980). - Gates, S. M., Russell, J. N., Jr., and Yates, J. T., Jr., Surf. Sci. 146, 199 (1984). - 41. Gates, S. M., Russell, J. N., Jr., and Yates, J. T., Jr., Surf. Sci. 159, 233 (1985). - 42. Zhang, R., and Gellman, A. J., Catal. Lett., in press. - Falconer, J. L., Burger, L. C., Corfa, I. P., and Wilson, K. G., J. Catal. 104, 424 (1987). - 44. Iglesia, E., and Boudart, M., J. Catal. 81, 224 (1981). - 45. Li, G., Ridd, M. J., and Larkins, F. P., Aust. J. Chem. 44, 623 (1991). - Solymosi, F., Erdöhelyi, A., and Bánsági, T., J. Chem. Soc., Faraday Trans. 1 77, 2645 (1981). - 47. Chen, B., Ph.D. Dissertation, Department of Chemical Engineering, University of Colorado, 1993. - Borello, E., Zecchina, A., and Morterra, C., J. Phys. Chem. 71, 2938 (1967). - 49. Morrow, B. A., J. Chem. Soc., Faraday Trans. 1 70, 1527 (1974). - Monti, D. M., Cant, N. W., Trimm, D. L., and Wainwright, M. S., J. Catal. 100, 17 (1986). - Lavalley, J. C., Saussey, J., Lamotte, J., Breault, R. Hindermann, J. P., and Kiennemann, A., J. Phys. Chem. 94, 5941 (1990). - Anderson, J. A., McQuire, M. W., Rochester, C. H., and Sweeney, T., Catal. Today 9, 29 (1991). - McQuire, M. W., Rochester, C. H., and Anderson, J. A., J. Chem. Soc., Faraday Trans. 1 87, 1921 (1991). - 54. Flesner, R. L., and Falconer, J. L., submitted for publication. - 55. Fink, P., Z. Chem. 7, 284 (1967). - 56. Fink, P., Rev. Roum. Chim. 14, 811 (1969).